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Abstract—On the basis of a linear complementarity, a mathematical formulation of thermo-
mechanical frictional contact is presented. Depending on the status of contact, either a conduction
condition or an insulation condition is applied. A complementarity condition between heat flow
and temperature difference along the contact surface is found assuming that no thermal contact
resistance exists. This thermal complementarity condition is implicitly related with the mechanical
one. The resulting linear complementarity with additional constraints is solved by a modified
Lemke’s algorithm. Two numerical examples are presented to illustrate the procedure and solution
behaviors.

INTRODUCTION

The analysis of thermo-mechanical contact can be important in many multidisciplinary
mechanical engineering fields such as semi-conductors and electronic devices. It is com-
plicated due to the coupling between mechanical and thermal fields. In the so-called zigzag
approach (Montmitonnet et al., 1992), the two fields are solved alternatively. The reduced
rate of convergence with this method can be compensated for by the use of a symmetric
solver. In the direct coupled formulation (Carter and Booker, 1989), however, an unsym-
metrical stiffness matrix occurs. In the simple case of a steady-state heat transfer analysis,
the effect of the mechanical field on the thermal can be neglected because heat generation
and dissipation due to mechanical deformations are often negligible.

As compared to much interest in mechanical contact, little literature is available on
the thermo-mechanical contact. Solution approaches of the mechanical contact can be
divided into two categories : trial and error type iterative methods (Chandrasekaran et al.,
1987) and reformulations in terms of equivalent mathematical problem forms such as a
variational inequality (Duvant and Lions, 1976 ; Panagiotopoulos, 1975, 1985; Antes and
Panagiotopoulos, 1992) or a complementarity problem (Klarbring, 1986 ; Kwak and Lee,
1988 ; Kwak, 1990, 1991).

Available mathematical and numerical models of thermo-mechanical contact usually
deal with conventional thermal boundary conditions (Comninou et al., 1981 ; Panek and
Dundurs, 1979 ; Mahmoud and El Shafei, 1989). This means that no resistance to heat flow
in the contact region exists, while the bodies in the separated region do not exchange heat.
In other words, the conventional boundary has a property of perfect contact or perfect
insulation. In the actual thermo-mechanical contact region, however, there exists thermal
contact resistance. Contact pressure and surface asperities are dominant parameters of
thermal contact resistance (Holman, 1986). Thermal contact resistance rapidly decays
asymptotically to zero as contact pressure increases. On the basis of the assumption that
the contact surface is perfectly smooth, it can be neglected. Consequently, the temperature
distribution and heat flux should be continuous across the contact surface.

In this paper, an analysis method is implemented for a two-dimensional thermo-
mechanical frictional contact. Based on a linear complementarity of mechanical contact
problem, a complementarity condition on thermal variables is appended. It adopts the
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Fig. 1. Two bodies in contact with (a) mechanical, (b) thermal boundary conditions.

conventional thermal boundary concept and the Coulomb friction law. Two numerical
examples are solved and the results of the examples compared with those by ABAQUS, a
commercial FE code.

GOVERNING EQUATIONS

The two bodies in Fig. 1 are in a quasi-static equilibrium state mechanically and in a
steady state thermaily. Body 2 is assumed to be restrained against rigid body displacements.
It is also assumed that heat transfer by radiation is neglected. The magnitude of heat
transfer by conduction is much bigger than that by convection along the potential contact
region.

Each boundary of the two bodies is composed of three disjoint parts mechanically; I",
where displacement is prescribed, I', where traction boundary conditions are given and I,
which is the so-called potential contact region. Thermally, the boundary of each body is
also divided into four disjoint parts; I'y where temperature is given, I, where heat transfer
by convection occurs, I', where heat flux condition is given and I', where the conventional
thermal boundary condition as explained above is applied.

(1) Global equilibrium equation of body 1

Body 1 is allowed to have rigid body motion ¢ as shown in Fig. 1, while body 2 is not.
For body 1, all the external forces and the contact forces should be in equilibrium. The
global equilibrium equation for body 1 is then obtained as follows:
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J (F,+dF)H, dT + j (S,+dS)A, dI" =0, )
r! 1!

r

where the coefficient matrix H;; and A, represent the rigid body displacements of points of
I',and T, in the ith coordinate direction due to a unit displacement in the jth rigid body
degree of freedom ¢;, respectively. F; and S, denote traction vectors corresponding to the
external and contact forces, respectively.

(2) Local equilibrium equation of each body
In the absence of body forces, the local equilibrium equation of each body is expressed
as follows:

(6f+dob),; =0 inQ*, 2)
where the superscript k denotes body numbering.
(3) Strain-displacement relation
dey = 3 (i, +u), 3
where u is an increment of displacement during a load increment.
(4) Stress and strain relation
dof = Cfy, def, — B30, @

where C%,,, B% and 6 represent constitutive coefficients, thermal modulus and temperature
change during a load increment, respectively.

(5) Local heat equilibrium eguation
Assuming that heat generation or dissipation is neglected and considering a steady
state, the local heat equilibrium equation is expressed as follows:

(gf+dghH), =0 inQ~ )]

(6) Heat flux—temperature relation
It is the law of Fourier as follows:

dgi = —x50,, Q)
where «k,; means the coefficient of thermal conductivity.

(7) Boundary conditions
Mechanical boundary conditions are expressed as follows :

u,=U, onT¥% @)
(o5+def)nf = FE+dFf onT¥%, ®)

where U, is a given displacement increment and » is a unit normal vector.
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Thermal boundary conditions are expressed as follows:

6=9, onlj, ©)
(gi+dg)rt = —Q, onT%, (10)
(q:+dg)nt = h[((®+6)—T,] onT%, an

where 3, Q,, # and T, are given, denoting temperature increment, heat flux, convection
coefficient and ambient temperature, respectively. The temperature at the end of the pre-
vious thermal loading step is denoted by 6.

(8) Impenetration condition

This is well described in Kwak (1991). Here only the resulting condition is summarized.
The gap between two surfaces measured at a surface point a; after deformation can be
represented as follows, in the first order approximation,

D,(a;)) = Dy —n' (u'(a}) +v(a]) +Ag), (12)

where a? is the opposing contact point and D? the initial gap before deformation occurs.
The second term in the right-hand side of eqn (12) denotes displacement or separation due
to pure deformation and rigid body displacement due to the rigid body degrees of freedom
@. Here A is the kinematic matrix representing the displacement of point a; due to ¢ as
used in eqn (1).

Since either the contact gap D,(a}) or the corresponding contact normal force P
between two mating contact points after load increment must be equal to zero, the following
condition is also satisfied :

P-D,(a!) =0 foralla onI}. (13)

(9) Coulomb friction condition
From the Coulomb friction law, the contact tangential force S; must satisfy the
following relation :

— P < Sy < P, (14)

where p is the friction coefficient. If |S;| < uP, then there is no relative tangential displace-
ment. If |[St| = pP, slip is imminent.

FINITE ELEMENT MODELING

The principle of virtual work for the mechanical part can be expressed as follows :

.[ (O',-j+d0',-j),j5u,-dV=0, (15)
|4

where du; is a virtual displacement. For the sake of simplicity in notation, the superscript k
which refers to the body numbering is omitted. By using Green’s theorem and eqn (4), eqn
(15) can be rearranged as,
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J Ciim de;,0 dey; dV—I 0B;0de; dV = 5R——J 6;0 de; dV, (16)
|4 v Vv

where R denotes the external virtual work.
A similar variational equation for heat transfer can be expressed as follows:

J (qi,i+d‘1i,i)50 dr=0, a7
v

where 86 is a virtual temperature. Also by using Green’s theorem and eqns (6), (9)—(11),
this can be rewritten as follows:

14 r, 14
where
5Q=jgwawjmnﬁmwa. 19
r, T,

For the finite element discretization, each of the unknowns is approximated by appro-
priate shape functions with unknown parameters. The increment in displacement and
temperature is then expressed as:

u = Nu, (20)
0 = N6, @n
where uand 0 stand for the nodal displacement and temperature increment to be determined,
respectively. N denotes shape functions. Then strain and heat flux can be approximated in
terms of u and 0 as follows:
de = Bu, 2
dg = B, (23)
where B, and B, are the strain—displacement transformation matrix and the temperature
gradient interpolation matrix, respectively.

Following the usual finite element discretization procedure (Bathe, 1982), two matrix
equations corresponding to eqns (16) and (18) are obtained. These equations can be

combined as follows :
K. Kpl|jul_JR| |2
5 xllr-er-12) 2

where

K, = J BICB.dV, (25)
14

Ko = —J. BIBNGYV, (26)

SAS 31:23-D
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Kgg = j ngBg dV+J‘ hNTN dr, (27)
v r,
#=Y f BlsdV, (28)
Vv
. f BiqdV, 29)
|4

and R and Q represent external force and heat flow, respectively.
Decomposing the nodal variables u and 0 into those on the potential contact region u°
and 6° and those on the interior u' and 6, eqn (24) can be rewritten in a partitioned form :

Kﬁu 29 K:fu LCG ui fi

DKk 0 Kh Ol _Jd (30)
K. Ko Ko Ki u fe

0 o 0 86 o q

where f', ¢, f° and ¢ are corresponding vectors suitably obtained from eqn (24).
After statically condensing out the interior degrees of freedom u' and @, the following
equation for the potential contact region can be obtained :

{5} (-6

where

- [K K[ K KK )
K] = - : “ w0 32
[kl [0 Kg:,] [0 :;9][0 o 0 Kj G2

) _[KL K&K ] {f‘}
acl ™ ol ii if 33)
{‘1 } [ 0 96][ 0 00 q ¢

Formally the following expression is obtained for the kth body,

u k . fc k i k
{(,c} = (8] {q} +{56}, &)

where B = K~! and

i . fc
o)}



Thermo-mechanical frictiona! contact 3223

Fig. 2. Principal axes, force, relative displacement and heat flow components at potential contact
surface.

Using these relations and the approach in Kwak (1991),

u) (w+u) [B, B. By|(P] [0,
W = “tl +“12 =|By By By (St (36)
0] (o'—p? 0 0 Bg,ilQ) (6

where By = —Brlm—szms B, = Bx11t+B12m B, = —Bx110+312199 B.= _Btln_Btzm
B, = B, +B2, B, = —BL+B2, By = —B};—B%, and the subscripts n and t refer to the
normal and tangential axis, respectively. The last term in eqn (36) denotes a suitably
obtained vector which is not a function of (P, St, Q). It can be represented as follows:

0, (0407
0, =<0 +02}. (37
8) (9 -92

COMPLEMENTARITY FORMULATION AND SOLUTION METHOD

The complementarity formulation of two-dimensional frictional contact derived in
Kwak and Lee (1988) is used for the mechanical part. To describe the complementarity in
the Coulomb friction law, an incremental relative slip value D at a contact pair is expressed
in terms of displacement increments and rigid body motion, and replaced with a difference
of two non-negative variables as follows:

D: =D{ —D7 =ut! +v’t? — A9, 3%
Df > 0andDy =0, (39)

where t! and t? are tangential base vector components at a contact point as shown in Fig.
2.
By introducing slack variables T* and T~, eqn (14) can be rewritten as
St+uP-T* =0, (40)

Sr—pP+T~ =0, @1)
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T*>0 and T >0. (42)

Then the following complementarity conditions are satisfied :
T D =0, 43)
T D =0. ‘44

Similarly, eqn (1) after discretization can be rewritten in the following matrix form
introducing slack variables V¥ and V—:

AIP+ATS; +H'(F+dF)+ V™ =0, 45)
ATP+ATS; +H'(F+dF)—V* =0, (46)
V*>0 and V- >0. @7

Decomposing rigid body motion ¢ with non-negative variable ¢* and ¢, the fol-
lowing complementarity conditions are satisfied :

Vi-p* =0, (48)
V-eg~ =0. (49)

Consider next the heat flow from a hot body to a cold one through an interface between
them. The heat balance equation along the potential contact region is given by:

Q' +Q* =0, (50)

where Q' and Q? represent inward heat flows per unit area to each body.

For simplicity in formulation, it is assumed that body 1 is hotter than body 2. Then
the total temperature difference, T' —T?, between a potential contact pair is always greater
than or equal to zero if no thermal contact resistance exists. Denote Q as the heat flow
received by body 2 and @ as the temperature difference, i.e.

Q=-Q'=0Q’, &)
0=T'-T =@ +0)-(®+0, (52)

where 8" and 82 represent the temperature of points on the potential contact region of each
body at the end of previous thermal loading step, respectively. Then Q and @ are always
greater than or equal to zero. Now it is possible to write a complementarity condition for
the conventional thermal boundary condition as follows:

Q0=0, (33)
Q>0 and ©2>0. 54

The thermal variables, however, are not independent of the status of mechanical
variables, i.e. gap and contact pressure. Thus it is necessary to consider eqn (53) in
conjunction with eqn (13). It is physically argued that @ > 0 only when D, > 0and Q > 0
only when P > 0.

Using eqn (36) and summarizing eqns (12), (38), (40), (41), (45), (46) and (53), a
linear complementarity problem is derived as follows:
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z =Mw+r, (55)
wiz =0, (56)
w>0 and z>0, (57)
where
z= {Dn’ D'-lf, T_s V+, V—’ Q}T’ (58)
W= {P, T+a D'i'—’ (P+9 ®, Q}Ts (59)
[ — Bnn + #Bm - Bnt 0 - An An - Bn9 1
B, —uB, B, I —A A B,
2ul -I 0 0 0 0 (60
M= ,
AT — pAT Al 0 0 0 0 )
—AT4+uAT  —AT 0 0 0 0
i 0 0 0 0 0 By |
r={D+a, @, 0, H'(F+dF), —H'(F+dF), §+8}", (61)
0=0'-0°, (62)

with the additional constraint described below eqn (54). That is, D, and ® must be basic
at the same time. So are P and Q.

This linear complementarity problem with additional constraints can be solved by
modifying the Lemke’s algorithm (Bazaraa and Shetty, 1979). That is, both P and Q fora
contacting pair of nodes should be kept basic if one of them becomes basic. Similarly this
is true for both D, and ®.

NUMERICAL EXAMPLES AND DISCUSSIONS

Two numerical examples are presented to illustrate the procedure and the results
compared with those by ABAQUS. In these examples, the bodies are restricted in the
direction where temperature difference exists. Thus the effect of temperature can be sig-
nificant. The dimensional unit of length used in the examples is millimeters.

Example 1: a plate between two rigid bodies

As shown in Fig. 3, a plate of 20 x 20 mm? is in contact at the top and the bottom with
rigid bodies. Thus the plate can expand along only the x-direction. It is assumed that there
is a thin layer in the middie between the top and the bottom. It maintains its temperature
of 100°C. The temperature of the rigid bodies is 0°C. The two sides of the plate are insulated.
Young’s modulus of the plate is 206 GPa and Poisson’s ratio is 0.3. The coefficient of
conductivity of the plate is 52 J (s m°C)~"'. The thermal expansion coefficient of the plate
is 1.7x 1073 °C™!,

For a finite element analysis, only a quarter of the plate is considered and modeled
with 56 quadratic plane strain elements and 199 nodes as shown in Fig. 4.

Ten equal temperature increments are used to solve this example. The contact pressure
builds up near the edge of the bottom surface and more rapidly as the friction coefficient is
larger as shown in Fig. 5. There appears to be a very sharp increase in contact pressure
near the edge. The maximum pressure is sensitive to the magnitude of friction coefficient.
The distributions of stick and slip zones are shown in Fig. 6. All contact nodes slide on the
contact surface except the origin when p = 0.1. There is a stick zone near the origin when
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Fig. 3. Geometry of example 1 with (a) mechanical boundary conditions and problem model
(hatched), (b) thermal boundary conditions for the problem model.

Fig. 4. Finite element model of example 1.

i = 0.3, Thus the distributions of frictional shear stress near the origin are not proportional
to the magnitude of friction coefficient as shown in Fig. 7.

For the results with those by ABAQUS, the temperature-displacement coupled quad-
ratic plane strain element, CPEST, and the temperature-displacement coupled interface
element, INTER3T, are used. ABAQUS uses two different numerical techniques to
implement the Coulomb friction model (Hibbitt ef a/., 1993). One is a penalty method and
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Fig. 5. Pressure distributions along the contact surface of example 1 with various frictional
conditions.
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Fig. 6. Distributions of stick and slip zones along the contact surface of example 1 when (a) 4 = 0.1
and (b) u = 0.3.

the other is a Lagrangian multiplier method. To check the stick and slip zones precisely,
the keyword card *FRICTION in conjunction with the optional parameter LAGRANGE
is used. The results of this example show good agreement with those by ABAQUS.

Example 2: two bodies in contact with the initial gap
Figure 8 shows the geometry with the size in millimeters. An initial gap of 0.05 mm

exists between the two bodies before thermal loading. The two sides of body 1 and all faces
except the bottom and potential contact region of body 2 are insulated. As the temperature
difference between the top of body 1 and the bottom of body 2 increases, the bottom of
body 1 touches body 2. Since the conventional thermal boundary condition as previously
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Fig. 7. Frictional shear stress distributions along the contact surface of example 1.
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Fig. 8. Geometry of example 2 with (a) mechanical, (b) thermal boundary conditions.
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Fig. 9. Finite element model of example 2.
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Fig. 10. Pressure distributions along the contact surface of example 2 with various frictional
conditions.
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Fig. 11. Distributions of stick and slip zones along the contact surface of example 2 when (a) = 0.1
and (b) = 0.3.
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Fig. 12. Frictional shear stress distributions along the contact surface of example 2.

explained is adopted, no heat exchange exists between them before contact. The material
properties are the same as the plate of example 1. Body 1 is modeled with 50 quadratic
plane strain elements and 181 nodes, and body 2 with 75 quadratic plane strain elements
and 266 nodes as shown in Fig. 9.

Ten equal load increments are used to analyse this example. Figure 10 shows the
pressure distributions along the contact surface of body 1 with various frictional conditions
when the temperature difference is 200°C. The frictional effect to the contact pressure
distributions are relatively small as compared to example 1 because the two bodies are
allowed to expand laterally. The stick and slip zones obtained from the present method and
ABAQUS are somewhat different near the origin when p = 0.1 and near the edge when
# = 0.3 as shown in Fig, 11. As shown in Fig. 12, the frictional shear stress near the edge
is much more wildly distributed in the ABAQUS results than the present when u = 0.3.
The deformed profiles of the top of body 2 with different frictional coefficients are shown
in Fig. 13. It is very much influenced by the magnitude of friction coefficient. The same
type of elements and keyword cards as in example 1 are used for ABAQUS runs.
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Fig. 13. Deformed profiles of the contact surface of body 2 with various frictional conditions.

CONCLUSIONS

A thermo-mechanical frictional contact is formulated as a linear complementarity
problem with additional constraints which is introduced to handle thermal boundary
conditions on the potential contact region. A modified Lemke’s algorithm is derived to
manage the constraints.

Two examples are considered and the results compare very favorably with those by
ABAQUS. It is shown that both friction and thermo-mechanical coupling effect can be
formally handled by the present method. In these examples, it is known that the distributions
of contact stresses, and stick and slip zones are very sensitive to the magnitude of friction
coefficient in thermo-mechanical contact.
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